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ON THE POS’IXRITICAL BEHAVIOUR OF 
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A. V BAUL 

Rostov-on-Don 

(Recekd 19 Jr+ 1993) 

The loss of stability and postcritical behaviour of a geometricahy imperfect elastic cylindrical shell subjected 
to axial compression at moveable hinged endfaces are asymptotically analysed in the limit as Z + m (where Z 
is the Batdorf parameter). The, asymptotic behaviour of the eigenvalues and associated vectorial eigen- 
functions, linearized about a torqueless solution of the boundary-value problem are constructed when Z + m. 
The Lyapunov4chmidt method is applied in the neighbourhood of each eigenvalue for which the asymptotic 
behaviour has been determined. For Z + - equilibrium eigenshapes that are odd with respect to the axial 
coordinate are shown to be unstable (the Koiter parameter b < 0), and the even ones (b > 0) are shown to be 
stable. It is shown that by an appropriate choice of initial imperfection the upper critical load for shell loss of 
stability (the limiting point) can be made to correspond to any of the close to (Z + -) critical loads for loss 
of stability of an ideal shell. 

1. STATEMENT OF THE PROBLEM 

Based on the non-linear Mushtari-Donnell-Vlasov medium deflection theory of gently-curving shells, 
the equilibrium of an elastic circular-cylindrical shell under the action of a uniformly distributed axial 
compressive load, taking into account small imperfection in its shape, can be described by the system 
of partial differential equations 

1 

Aiw + PW ,]Lx -F,, +w& -[W, Fl - a, Fl = 0 

E~A~F+W,~+[W,W]!~+~[~;,W]-O (1.1) 

4) -0.n +Ov,; [W, Fl - WV, F., -2 W,, F,, + W,, F,, 

~~ -Rh/(yL2)-(di!iZ)-‘, y-~/s, l-‘2rrRIL 

in the domain G = {(x, y): 1x1 < Y2; Iyl < Z/2}. 
We shall consider system (1.1) together with boundary conditions 

W = 0, W,, = 0, F = 0, F,, = 0 when Ix I = ‘12 (1.2) 

The following notation is used: XL, yL are respectively the axial and circular coordinates, m2/R 
is the additional deflection, Eh2L2R-‘y&F - M/2) is the stress function, c1;L2R is the initial imperf- 
ection function ( 16 I % l), PP./2 is the axial load parameter, P, = 2EhlyR is the classical critical load, 
c2 is the relative thinness parameter, Z is the Batdorf parameter, L, r and h are the length, radius of 
curvature and thickness of the shell, E is Young’s modulus and v is Poisson’s ratio. 

Assuming that the function C, is sufficiently smooth in G, the boundary-value problem (l.l), (1.2) 
will be treated as a non-linear operator equation 

V(u, P, 55, Ed) = 0, v: H4 - Y2 (1.3) 
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u = (W, F), vu, P, Er;, E2) = MV, E2)U + Mu, P, m 

MteE*)o - N s*A*O + PO,, -(Lx 

-0rxx -&*A*() II 

N(u, P, ED- H WC,, -w* Fl- tx* Fl 

-[W,W}/2-~[~,Wl I! 

(1.4) 

Yz is the linear space of two-dimensional vector functions f = (fi,fi), g = (81, gz), . . . with finite norm 
generated by the scalar product 

and the space H4 is the closure of the set of vector functions u = (ui, UZ), v = (~1 QZ), . . . that are 
infinitely differentiable in G, satisfy boundary conditions (1.2), and are finite in the norm, generated 
by the scalar product 

( u, v )4 = s3( Au, Av j2 (1.6) 

The zero-moment equilibrium shape (W., F.) = (0, Fy2/2) of the shell in (1.3) when 5 = 0 corres- 
ponds to the trivial solution. This solution can lose stability at the bifurcation point of P = PO of the 
operator I@ = 0). 

We note that when P = Pa the operator M(P, E*) has a zero eigenvalue (EV). This value of the 
parameter P is called critical. The presence of small imperfections means that the fundamental zero- 
moment equilibrium shape loses its stability not at the bifurcation point, but at a limiting point. It is 
important to investigate the effect of the Batdorf parameter (large for thin-walled shells) on the loss 
of stability for the basic equilibrium shape of the shell, and to determine the bifurcation values of the 
axial loading parameter and the upper critical load for loss of stability (the limiting point) due to the 
presence of small im~~ections. 

2. ASYMPTOTIC FORMS OF THE CRITICAL VALUES OF THE 
PARAMETER P WHEN E + 0 

The critical values of the parameter P are EVs of the boundary-value problem 

$A2W + PW,, - F,, = 0, e2A2F + W *x.x =o 
(2.1) 

W(fl/*) = 0, W,,(f’/*) = 0, F(f’/*) = 0, F&J/2) = 0 

Here the vector eigenfunctions (VEFs) S = (W, F) should be periodic with period I in the variable 
y. We shall construct the a~ptotic forms of the EV P E [O, 2) and its associated VEF as E + 0. We 
will first consider the case when VEF does not depend on y. Puttingx = ti, W = us and F = u,-J, in this 
case we have from (2.1) 

U;” + Pug- I$ - 0, u&V + u; = 0, 0 - d() / dr 

(2.2) 
&)(*A) - 0, u;;(*A) - 0, w,(+h) = O,~~(*A) = 0, A = 1 I 

We denote by #I (P$‘) the EVs which correspond to the even (odd) VEFs Sk” (S$)) of problem 
(2.2). When P E [0,2) we shall seek the solution of problem (2.2) in the form 

Sb”‘(f)=2Re(Achqt/chqA)+a, A=Al(l,-2~1-2), a=(~,,%) 
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Sb”(f)-2Re(Bshrp/sh+)+cr 7 B=B,(l,-2q-*), c-(c,,c2) (2.3) 

q=(s, +is2)l&, SI -69 S2 -Jl+p9 Papi 

where the complex constants Ai and B and the real constants ui, ci (i = 1, 2) are for the time being 
unknown. Substituting (2.3) in turn into the boundary conditions of problem (2.2), we obtain an 
inhomogeneous system of linear algebraic equations whose non-trivial solvability leads to the trans- 
cendental equation 

(1 - P)s2 + 12(1 + P)s, sin(G&A)- (1 - P)s2 exp(-&s2A)]exp(-&%,A) = 0 

I - P+2&Ps,& +[(P-l)s, exp(-&*A)+ P-l -~&P.s,E + 

+&Ps,~sin(&,A)]exp(-&,A) = 0 

It can be shown that for sufficiently small E > 0 each of Eqs (2.4) has a single root p E [0, 1). 
Constructing the asymptotic forms of these roots as E + 0, we find that for the corresponding EVs of 
problem (2.2) 

pd”’ I 1 +LsinJ?expI_L\ 
ti 2E \ 2s) 

+ 0( exp(-J-1) 

pd’) - I+ 2E + 2E2 + O(E3) 
(2.5) 

We will now consider the case when the VEFs of problem (2.1) depend on y. We shall seek the 
solution of problem (2.1) in the form 

S(X,Y)-S 
n\&l \ n 

(z\sin(d y+t) 

s,(‘) - 
E 

u~(“),w,,(“) 
E E 

, d, ??!! 
1 

Using separation of variables after the substitution x = cf, (2.1) gives 

@(Cl,& + Pu;'-w;- 0, cp(B,)u, +uA'-0 

un(*A) - 0, 4,Y*A) - 0, v,(*A) - 0, $,(*A) = 0, n = 1,2 ,... 

@(%I )() = 0’” - zli()” + 8,4(), 8, = dnE 

Searching for a solution of problem (2.7) of the form 

u,(t) ---(r* -e:)* exp(rf), u,(t) - r* exp(rf) 

we arrive at the characteristic equation 

which has four pairs of complex roots ‘Iljp *Q (j = 1,2) where 

q, -(s, +t, +i(s2 +t2))l(2JZk q2 =(q -Q +i(s2 -t2))l(2JZ) 

q-,/x, r2-4i-2&-, R-d- 

(2.7) 

(2-9) 
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We shall seek the even solutions !$)(t) and odd solutions S;‘)(t) of problem (2.7) in the respective 
forms 

So*‘-2Re 
(2 chq.t \ 

I 
1 C.2 
j-l ’ chrt#)’ 

Cj g C,,*(-l,~) 

(2.10) 

(2 shq.t \ 
Sf’(t)= 2Re 2 D.2 

I j-1 ‘shT$f# 
Dj - Dj,J-l,c) 

C = -p + isIs 

We arrive at equations similar to (2.4) 

It can be shown that for s~ciently small E > 0 each of Eqs (2.11) has precisely one root p E 10, 1). 
Constructing the asymptotic forms of these roots as E -+ 0, we obtain the behaviour of the corres- 
ponding EVs of problem (2.7) 

P(O) * 1 + c&2 + O(E3) n 
(2.12) 

P”)=I+2&+(2+d,2)&2+O(E3), n-1,2,... n 

The asymptotic formula (2.12) can be proved by methods similar to those described previously [I]. 
As a result we arrive at the following theorem. 

7Izorem 1. Let E > 0 be a sufficiently small number. Then for every positive integer tt < n,, where n* 
= ~(3~/(4~(2)~) (th e v al ues in square brackets represent the integer part of a number), the boundary- 
value problem (2.1) has exactly two EVs P,, , (‘I P(l) E [0,2). Here the following assertions hold: ,, 

1. for a given natural k one can fmd an Q, > 0 such that when 0 < E < sc and 0 G II G k, the EVs 
P$) (j = 0, 1) have the asym totic representations (2.5) and (2.12) 

2. P,‘O’ < P?Lr; P,“’ < PC+1; PLO’ < P,“’ (n = 1,2, . * . , II, - 1). P 

We will now give formulae for the VER, corresponding to the EVs from (2.5) and (2.12) 

-1, u~“‘(t)-2Re(A,q”~)-p 

p-Pd”)/2, A, -(I-2ip)/(2s,s2) 

x@(t) - 2Re(qrlm2 z)-2pt 

p- Pd”l2; B, -A(yZ-ip)l(2sIs2) 

Sj,j’(t) - J<@(f)- Vi(C), -QCFpt>+ q(r)), j - 0.1 

Q = Q + iQ2, Q, - R-‘(2p* -40,2p - 11, Q - R-*sls2(48~ -2p) 

J=1+iQ2/(1-Q,), p- P(j)/2 n ’ j-0 1 * 

Y,(t)_chrllt_---, ch rl2t 

chrld chr(,A 

Y,(&!!J!!L_sh?,t 

shr(,A shq2A (2.13) 
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We denote by o(s, u) the set of EVs Ppl of problem (2.1) which satisfy the inequality 

(Pn(i)-1)/&U O<U-O(l), j-0,1; n-1,2 ,... (2.14) 

The set of VEFs corresponding to the EVs in o(&, u) are denoted by iY(a, U). We have the following 
relations 

a(&,U)-a(“)(E U)Uc+‘)(&,U) , 
(2.15) 

H(E,u) - H”‘(E,U)U dl)(E,U) 

Here the set $)(E, u) corresponds to the EV set &(E, u). The VEFs S E H(E, v) satisfy 

if 
SE 

1 

&‘)(E u) 

H(‘)(a’U)’ if 

s,s - isp - s 

9 t -S,S I iSyS = S (i - *l) (2.16) 

(S,: u(x,y) - U(-x,y)r sy: u(x,r> + u(x.-YN 

3. APPLICATION OF THE LYAPUNOV-SCHMIDT METHOD 

We shall use the operator form of the LyaptmovSchmidt method [2] to investigate the branching 
of the trivial solution (5 = 0) of Eq. (1.3) and to construct new solutions in the neighbourhood of any 
bifurcation point PO E CS(E, u). Putting u = x, P = PO + A, from (1.3) we obtain operator equations for 
small perturbations x = (0, v), X 

M(&,E*)x=IIx +h7$+5T2(1;)x + P,~T,f+A.Q~ (3.1) 

It can be shown that the operators M(P& c2), II, Tl, T2 act from H4 into Y2, and moreover that 
the operator M(Po, E*) is formally self-adjoint. Because PO is a simple critical value (at least for small 
E > 0) of the operator M(Po, E*), we construct [2] a Schmidt operator Mr in the form 

M,x-M(P,,s*)x+&,, IL-(‘& (3.2) 

Here (x, K)~ is the value of the functional K E (H4)* at the element x E H4 and S, is the VEF 
corresponding to the EV PO. We assume that 

(so, so)4 = ‘Cl; (so, so)2 = K2 (3.3) 

We note that taking (3.3) into account the relation 

( X, K >I = ( MIX, so b/K2 (3.4) 

follows from (3.2). 
We write (3.2) in the form of the equivalent system of equations 

M,x=~+h~x+ST2(S)x+Po~T,5+~T,r+ClSo 

CL = ( X, K >i 
(3.5) 

We shall seek a solution of system (3.5) in the form of a series of integer powers of the small 
parameters p, h, 5 

x =x1(-# + XOl& +x0& + 1 Xiik,wgk XC - ((+&ijk) (3.6) 
i+j+kz2 
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Substituting (3.6) into the first equation of (3.5) and equating coefficients of like powers of the 
parameters p, h, 5, we obtain linear operator equations for determining %jk which are solvable by virtue 
of the generalized Schmidt lemma [Z] 

MPijk -fiik, i+j+kal; X#EH‘,, f$E$ (3.7) 

Here, in particular 

We will find the first few coefficients of series (3.6). Using MIS, = K@O we obtain S, = l?S, where 
r = (MI)-‘. From this we find that xl00 = S&+ Then from condition &o = 0 we have %lo = 0. 
Sequentially solving Eqs (3.7) we find 

Xml = p,r(T,c), Xl10 = r(l;X,m) - r(T,so)I Kl (3.8) 

X2m = f(k,~~) = r(ns,) 1 K; 

etc. 
Noting that 

(3.9) 

we obtain a nume~~y more convenient form of the equations governing wl, xzoo 

M(P,,E~)xoIJ, = ~o(T,~-(T,~,S,)~SIJ /K2) 

M(P,,~~)x~~=(~S~-(ns,,s,),s,/lc,>/~:. 

(3.10) 

Su~ti~~g series (3.6) with known coefficients into the second relation of (3.5), we derive the 
branching equation, which can be written in the form 

&J,P3 +L,,&+&&+..*=O 

The dots denote terms that are of higher order in p, h, 5, and the angle brackets denote the scalar 
product of functions. 

We note that ~5~ = 0 by virtue of the periodicity of the VEF S,, in the variable y. We assume that 
I& + 0 and Lool = 0. Then (3.11) can be transfo~ed into the form 

~(~,h,~)a6~3-3c~+K(%)5+...=0 
(3.12) 

According to Koiter the coefficient b (the Koiter parameter) is a coefficient of the sensitivity of the 
structure to imperfections. That is, if b c 0, the shell is taken to be sensitive to imperfections, because 
in this case the critical stability-loss load for an imperfect shell PoJ is less than that for the perfect shell 
Pe The limit point PQ is found from the simultaneous solution of Eqs (3.12) and 
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and is obtained in the form 

p,,, -&+3(K(~)~/2)gbX+... (3.14) 

We remark that formula (3.14) was Srst obtained by Koiter. The solution of EQ. (1.3) corresponding 
to the limiting point PoJ is unstable. Because of what has been said earlier the problem of establishing 
the sign of the Koiter parameter b is very important. Few analytic results have been obtained. We note 
the papers [3,4] which proved the positivity of the Koiter parameter for plates of arbitrary shape under 
the action of external pressure. A graph of the dependence of the Koiter parameter on the Batdorf 
parameter has been given [5] and an asymptotic formula for the parameter b when 2 + 00 has been 
numerically obtained for a cylindrical shell undergoing axial compression with clamped ends. Below 
we construct the leading asymptotic term (2 + -) of the Koiter parameter corresponding to a 
cylindrically compressed shell with moveable hinged ends. 

4. ASYMPTOTIC FORMS OF THE PARAMETER b WHEN P,, E ~(O)(E, U) 

We introduce the notation 

410 - ullO* 600 -‘&oo (4-l) 

We consider the case when PO E o(‘)(E, v), i.e. S&y) = (u”’ (‘I n , II, )(t) sin (c&y + m/2) (n = 1,2, . . .). 
With the help of the replacement x = EZ we deduce from (3.11) that 

w-4 

Here we omit the superscript (0) from u,. Using the asymptotic formulae 

rll -~(l+iJ5)+O(s2), q2 -0(&q, q+l+iJj;)+o(E2) 

cm-- :(l-iJs)+O(E’), P--+(l+i&)+O(a’), J-(1+-&)+0(E) 

we find from (4.2) that 

lr,fJ =41/E + O(1) (n = 1, 2,...) (4.3) 

Thus the leading term in the asymptotic expansion of Ztlo does not depend on the wave number n 
along the circumference of the cylindrical shell. 

We now construct an asymptotic formula for K~. Noting that the relation 

P” -lls,llf /(El,& 

follows from (2.1) and taking the limit as E -+ 0 in this relation using (4.3), we find 

K1 = 41+ O(E) (4.4) 

This means that 

f&o =1/E + O( 1) (4.5) 

To construct the asymptotic expansion of L 3oo it is first necessary to construct the solution of the 
boundary-value problem 
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A;:oza,, + P,o& -I&-, - -di [(u,w, ),I + (A)“+1 a, cos2d,y] / 2 
(4.6) 

A$j~z~ +u&, - &(u,z / 2)” +(-l)“+‘Cg, cos2d,y]/ 2 

A,( )-( )“+( ),, ( )‘-a( )/at 

W*i)l)(fA) - 0, O&&A)-0, qJ~@-Jfh)‘O, qJ’(*A)-0 

0, - u;iJ, - 2u;w:, + u,w;, a* - I& -(up 

which is obtained from the second equation of (3.10) with 

S& y) = (u,, 9J(r)sin(dd + ~42) 

without using icl. In formulae (4.6) the superscript (0) has been omitted from P,, u,, u,, w, yzoo. We 
shall seek the solution of problem (4.6) in the form 

I, - w,(r) + (-l)“w,Wos24Y 

(4.7) 
v2~(~~y)=~,(~)+(-l)nv2(~)~~~2~ny 

Substituting (4.7) into (4.6), and separating the variables, we obtain the boundary-value problem 

cP(ai)oi + GOD’- vi’- A, @(U;)qi + OI’- gi 

We 9 0, o:~*A) I 0, ~\l(*A) I 0, ~~(*A) P 0 
(4.8) 

@(a)( ) I ( )I” - 2a*( )” + a4( ), aI = 0, a2 - 28, 

governing q(r), vi(r) (i = 1, 2). 
Using relations (3.11) and (4.7), we transform the formula for Zs, into the form 

l3, --~~Ilo;L.w, +l#;h,21+~~[f2”2 +&I&] (4.9) 

We construct the asymptotic solutions of boundary-value problems (4.8) using the asymptotic inte- 
gration method [6]. We note that according to the results of Section 2 we have the asymptotic 
representations 

P(O) - is’ Pi;)& p,“o’ - pd”; I$’ - 0, P,(p: - d,2 n (n - 1,2 ,...) (4.10) 

The right-hand sides of boundary-value problems (4.8) can also be represented in the form of series 

40) - j$o .#t;!“(t)zi, 
_ 

gi(t) - jfo gjj)(t)sj 

where f;:(‘)(r) 9 0, g!‘)(t) 9 0. We seek the solutions of boundary-value problems (4.8) in the form of 
series 

CD,(t) = E-2CDj-2)(t) + E%~-‘j(t) + wj”(t)+... 

qi(t) = E-2q~-2)(r) + e-‘q~-‘)(r) +qjO)(rj+... (i - 1,2) 

Substituting these series into (4.8) and equating the coefficients of si to zero, we obtain boundary-value 
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problems governing 0,0’(t), tiJ(t). We solve these forj = -2 and obtain 

CO~-~‘(~) = C~-2)~o)(f), ~~-2)(f) - C~-2'v$o'(t) (i - $2) (4.11) 

The constants Ci’_2’ are found from the solvability conditions for these boundary-vahre problems 
whenj = 0, and are obtained in the form 

p B -_ 
3 K%&~b - (~i,)2~ol + O(E) 
2 1[7(u;,)2 - 8(ub)2] 

(4.12) 

(the superscript (0) is omitted from ~0, ~0). Using relation (4.3) in (2.12), from (4.12) we deduce that 

C-2) = -1 + O(E) 

From this we obtain 

wj(t) g -fk~o’(t)&-2 + 0(&-r), pi = -U~“‘(t)&-2 + O(E-r ) (i = 1.2) 

We now use the latter formulae together with relation (4.9) and compute the integrals, obtaining 

d2 
J%00=+ 81 

-3 + o(s-2), b - -GE + O&-l) d,2 -2 (4.13) 

From this it follows that for sufficiently smah E > 0 the bifurcation point P,$‘) E &‘)(a, V) turns into 
the limit point P$ where 

pw) _ p,‘o) _ 3 
n‘s 

W3dnE ’ +. , . 
2 ( 1 h 

(4.14) 

Here the dots denote terms of higher order of smallness in 5; it is assumed that 5 = O(E’), i.e. the 
amplitude of the initial imperfections is proportional to the relative thinness of the shell. 

We introduce the notation 

P, - min #,t’ 
A 

(4.15) 

and caI.I Pa the limit point corresponding to the set of bifurcation points P,(o’ E o@)(E, U). 
With an appropriate choice of the function c the Iimit point P, can correspond to any bifurcation 

point from the set ~(‘)(a, U). 
Indeed, suppose 

where Wi(X, y) are the first coordinates of the VEF of boundary-value problem (2.1) corresponding to 
the EV Pfi Using the orthogonahty condition 

we derive Lmi = P$“)cQ1l~ from (3.11). 
From this we have 

R(1;) = -$“)an I rc, = -a, I(41) + Q(1) 
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Then 
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(4.16) 

Now suppose that {(x, y) = 2Wj(x, y)/(nj). Then the relation 

(4.17) 

follows from (4.15) and (4.16). 
The result obtained above can be expressed as a theorem. 

zkolV?m 2. Let P,‘O’ E c+O’(& u) 5 - 0(E2) ( E + 0). Then to the bifurcation point P,, there corresponds 
a limit point P,., < P,, with asymptotic representation (4.14). Moreover, for everyj such that Pj E do)@, 
Cl), one can select an imperfection function < such that Ps,j is the Iimit point corresponding to the set of 
bifurcation points a”)(&, u). 

5. ASYMPTOTIC FORMS OF THE PARAMETER b WHEN PO E a(‘)(&, LI) 

In this case So&y) = (ui’), @)(t) sin (&y + m/2) (n = 1,2, . . .). Using the asymptotic formulae 

Q-;(I+&)+2 -(I-i&)e+O(~~) 

and continuing as in Section 4, we again arrive at formulae (4.4) and (4.5) for K~, Illo. 
In the same way as above we obtain 

5d4 _2 
400 - -jj@ 

5d; -, 
+O(E-‘), bmglZe +0(l) (5-l) 

It follows from (5.1) that b > 0. Consequently, the bifurcation points Pi”) do not turn into limit 
points, and the corresponding eigenshapes (odd with respect to the axial coordinate) are stable. 

I wish to thank L. S. Srubshchik for useful advice and discussions. 
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