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The loss of stability and post-critical behaviour of a geometrically imperfect elastic cylindrical shell subjected
to axial compression at moveable hinged endfaces are asymptotically analysed in the limit as Z —» oo (where Z
is the Batdorf parameter). The asymptotic behaviour of the eigenvalues and associated vectorial eigen-
functions, linearized about a torqueless solution of the boundary-value problem are constructed when Z — o,
The Lyapunov-Schmidt method is applied in the neighbourhood of each eigenvalue for which the asymptotic
behaviour has been determined. For Z — o equilibrium eigenshapes that are odd with respect to the axial
coordinate are shown to be unstable (the Koiter parameter b < 0), and the even ones (b > 0) are shown to be
stable. It is shown that by an appropriate choice of initial imperfection the upper critical load for shell loss of
stability (the limiting point) can be made to correspond to any of the close to (Z — ) critical loads for loss
of stability of an ideal shell.

1. STATEMENT OF THE PROBLEM

Based on the non-linear Mushtari-Donnell-Vlasov medium deflection theory of gently-curving shells,
the equilibrium of an elastic circular-cylindrical shell under the action of a uniformly distributed axial
compressive load, taking into account small imperfection in its shape, can be described by the system
of partial differential equations

§2AW + PW,_ —F,  +EPL,, —(W,F]-£[t, F]=0
XA F+ W, +[W,W]/2+E[C, W] =0 1.1)

AQO) = Qs +0nyy s (W, F1m W, F, 2W, F, +W, F,,

2w Rh/ (LY = (W12Z)7", -\/12(1—\/ ), I=2nR/L

in the domain G = {(x,y): |x| < ¥ |y| </2}.
We shall consider system (1.1) together with boundary conditions

W=0, W,,=0, F=0, F,,=0 when Ixl=1/ (1.2)

The following notation is used: xL, yL are respectively the axial and circular coordinates, WL%R
is the additional deflection, EhZLZR‘1 ¥ (F - Py’2) is the stress function, ECL?R is the initial imperf-
ectlon function (|| < 1), PP./2 is the axial load parameter, P, = 2Eh/YR is the classical critical load,
€’ is the relative thinness parameter, Z is the Batdorf parameter, L, r and k are the length, radius of
curvature and thickness of the shell, E is Young’s modulus and v is Poisson’s ratio.

Assuming that the function  is sufficiently smooth in G, the boundary-value problem (1.1), (1.2)
will be treated as a non-linear operator equation

V(u,P,EC, ) =0, V:H,— Y, (1.3)

tPrikl. Mat. Mekh. Vol. 58, No. 6, pp. 109118, 1994.

1051



1052 A. V. Baul

Here
u=(W,F), V(u,P,EL, €2 =M(P, £®)u + N(u, P, EL)

2820+ POy ~Orxe
"’()’xx "£2A2 ()

M(P,e*)() =

(1.4)

!xx_W’F" 3F]
Neu, Pety | SFox W FI-EE “

-[W,W1/2-E[L. W]

Y, is the linear space of two-dimensional vector functions f = (fy, f>), 8 = (81, 82), - . - with finite norm
generated by the scalar product

(f.g), -é (181 + f282)dxdy (15)

and the space H, is the closure of the set of vector functions u = (uy, u3), v = (01 vy), . . . that are
infinitely differentiable in G, satisfy boundary conditions (1.2), and are finite in the norm, generated
by the scalar product

{(u,v); =3 Au, Av ), (1.6)

The zero-moment equilibrium shape (W., F.) = (0, Py*/2) of the shell in (1.3) when & = 0 corres-
ponds to the trivial solution. This solution can lose stability at the bifurcation point of P = P, of the
operator V(€ = 0).

We note that when P = P, the operator M(P, €) has a zero eigenvalue (EV). This value of the
parameter P is called critical. The presence of small imperfections means that the fundamental zero-
moment equilibrium shape loses its stability not at the bifurcation point, but at a limiting point. It is
important to investigate the effect of the Batdorf parameter (large for thin-walled shells) on the loss
of stability for the basic equilibrium shape of the shell, and to determine the bifurcation values of the
axial loading parameter and the upper critical load for loss of stability (the limiting point) due to the
presence of small imperfections.

2. ASYMPTOTIC FORMS OF THE CRITICAL VALUES OF THE
PARAMETER P WHEN € - 0

The critical values of the parameter P are EVs of the boundary-value problem

e2AW + PW, o~ Fox=0, €2A%F + Wo=0
(2.1)
W) =0, W,u('2)=0, Fx'/2)=0, F(t'2)=0

Here the vector eigenfunctions (VEFs) S = (W, F) should be periodic with period / in the variable
y. We shall construct the asymptotic forms of the EV P € [0, 2) and its associated VEF as € — 0. We
will first consider the case when VEF does not depend on y. Puttingx = &, W = yg and F = vg, in this
case we have from (2.1)

Uy + Puy—vy =0, v +uy=0, () =d()/dt
(22)
ug(£A) =0, up(xA)y=0, vo(£A)=0,05(xA)=0, A=1/(2¢)

We denote by P (P{") the EVs which correspond to the even (odd) VEFs S (S§Y) of problem
(2.2). When P € [0, 2) we shall seek the solution of problem (2.2) in the form

S (1) =2Re(Achnt/chnA)+a, A= A(L,207%), a=(a.a)
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SO (1) =2Re(Bshnt/shnA) +cr, B=B(1,-2n7), c=(c;,¢;) (23)
n-(s,+is2)/ﬁ, 5 =1-p, s2=\/1+ , p=P/2

where the complex constants 4; and B and the real constants a;, c; (i = 1, 2) are for the time being
unknown. Substituting (2.3) in turn into the boundary conditions of problem (2.2), we obtain an
inhomogeneous system of linear algebraic equations whose non-trivial solvability leads to the trans-
cendental equation

(1- P)sy +[2(1 + P)s; sin(v25,A) = (1 - P)s, exp(—v25,A)lexp(~v25,A) = 0
(24)

I - P+2v2Psie +[(P—1)s, exp(~V2s,A) + P—1-2/2Ps;e +
+4\/§Ps,e sin(ﬁszA)]exp(—w/Es,A) =0

It can be shown that for sufficiently small € > 0 each of Eqs (2.4) has a single root p € [0, 1).
Constructing the asymptotic forms of these roots as € — 0, we find that for the corresponding EVs of
problem (2.2)

0 opedn Y3 o L) (_1)
Po() ]+\/§S 2sep\ 28}+0(CXP\_28/)

2.5)
PV =1+2¢+2e +0(e)

We will now consider the case when the VEFs of problem (2.1) depend on y. We shall seek the
solution of problem (2.1) in the form

S(x,) =, (%) sin{d,y + 2°)

(2.6)
(6= () a2
Using separation of variables after the substitution x = &, (2.1) gives
®(0, )u, + Pul/—v/ =0, ®(O,)v, +u,=0
U, (xA) =0, w/(xA)=0, v, (xA)=0, v,(xA)=0, n=12,... 2.7
©(8,)0 = 0" -2630"+8,0, 8, =d,e
Searching for a solution of problem (2.7) of the form
u, (1) = —(r* —02)2 exp(r1), v,(t)=r*exp(rr)
we arrive at the characteristic equation
(r2-02 /2 +r?2 1 (r* -8 = 2p (2.8)
which has four pairs of complex roots +n, +7; (j = 1, 2) where

M= (5 +8 +i(s; + 1))/ (2V2), m, =(5, =t +i(s, ~ 1))/ (2V2)

f=\R+402-p, 1, -JR-408%4+p, R= V1667 —8p2 +1

(29)
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We shall seek the even solutions S(f) and odd solutions S{V(¢) of problem (2.7) in the respective
forms

{2 chn;t -

SO ) =2R C,; L, C,=C;(-1,€

n ( ) ekjgl J Chn]A} ] jJ( )
(2.10)

{2 shn;t) -

SO =2R D,—~, D,=D; (-1,C

»0=2Re 30, 50R) Pim Db

C=—p+iss,
We arrive at equations similar to (2.4)
Im[C(n} -3 )T th A - 7, th,A)] = 0

(2.11)

Im{C(n}{ - n3)(7 cth A - T, cthT,A)] = 0

It can be shown that for sufficiently small e > 0 each of Eqgs (2.11) has precisely one root p € {0, 1).
Constructing the asymptotic forms of these roots as € —» 0, we obtain the behaviour of the corres-
ponding EVs of problem (2.7)

PO w1+d%? +0(c)
(2.12)

PV wi+2e+(2+4d1)e? +O(e®), n=12,..

The asymptotic formula (2.12) can be proved by methods similar to those described previously [1].
As a result we arrive at the following theorem.

Theorem 1. Let € > 0 be a sufficiently small number. Then for every positive integer n < n,, where n*
= V(3)I/(4V(2)me) (the values in square brackets represent the integer part of a number), the boundary-
value problem (2.1) has exactly two EVs P®, PV ¢ [0, 2). Here the following assertions hold:

1. for a given natural k one can find an g5 > 0 such that when 0 < € < ggand 0 < n <k, the EVs
P9 (j = 0, 1) have the asymptotic representations (2.5) and (2.12)

2.PO < PO PO < PO PO < pD(n=1,2,...,n,-1).

We will now give formulae for the VEFs, corresponding to the EVs from (2.5) and (2.12)

chnt ©) ( 2 chnt
-1, t)=2Re| A e |
ch'r]A) vy (2) el Am chnA P

ulO (1) = 2Re(A,

p=RY12, A =(1-2ip)/(255)

(1) = 2R (B shat ) o) = 2Re( B2 S5
4o (8) © 3shnA+' Vo (1) eom shnA Pt

p= P12 B = AC%-ip)] (255)

S(1) = J(QY (1) - Y; (1), -QCY,(1)+ CY;(1)), j=0,1

Q=0 +iQy. Q =R'(2p"-480p-1), Q) = R5;5,(48] -2p)
J=1+iQ 1(1-Q), p=FP 12, j=0,1

chn  chnyt shnt  shnyt
Yo(r) = DML ChME -y gy SOTUE SHME
o) chmyA chmpA 1) shmA  shnpA (2.13)
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We denote by o(g, U) the set of EVs PY of problem (2.1) which satisfy the inequality
(PP -1)/e<U, 0<U~0Q1), j=01; n=12,.. (2.14)

The set of VEFs corresponding to the EVs in o(g, U) are denoted by H(g, U). We have the following
relations

o(e,U) = 0@ (e, U)U oW (e, U)

(2.15)
H(e,U)= HO(e,U)U HV (e, U)
Here the set H9(g, U) corresponds to the EV set oY, U). The VEFs S € H(g, U) satisfy
H%e,U), if S,S=iSS=S
HVE,U), if -5S=iSS=S(i=zl) (2.16)

(S: u(x,y) > u(=xy), S,: u(x,y)—>u(x,-y))

3. APPLICATION OF THE LYAPUNOV-SCHMIDT METHOD

We shall use the operator form of the Lyapunov-Schmidt method [2] to investigate the branching
of the trivial solution (§ = 0) of Eq. (1.3) and to construct new solutions in the neighbourhood of any
bifurcation point Py € o(g, U). Putting u = x, P = P, + A, from (1.3) we obtain operator equations for
small perturbations x = (, ), A

M(Py,e?)x =TIx + AT;x + ET3 (€)% + BETL + AETIC (3.1)
[@,9] Ore %]
""'ltm,mm ﬂ T‘O'HO H TZ@"'"[c,wln

It can be shown that the operators M(P,, 82), I, T;, T, act from H, into Y,, and moreover that
the operator M(P,, €2) is formally self-adjoint. Because P, is a simple critical value (at least for small
€ > 0) of the operator M(P,, £?), we construct [2] a Schmidt operator M in the form

Mx = M(By,e¥)x +uSy, 1 =(x,x) (32)

Here {x, x); is the value of the functional x € (H,)* at the element x € H, and S, is the VEF
corresponding to the EV P;. We assume that

(S0, So)a =x1; (So, So)2=%2 (3.3)
We note that taking (3.3) into account the relation
(x,% )y =(Mix, So )ofx; (34)

follows from (3.2).
We write (3.2) in the form of the equivalent system of equations

Mx =TIx + AT)x + ET, (§)x + RETC + AET,L + uS,
n =(X, K )1

We shall seek a solution of system (3.5) in the form of a series of integer powers of the small
parameters |, A,

(3.5)

X= xlmu + xOlok + Xmlg + 2 xijkui)\.jgk xijk - ((Duk,'lpuk) (3.6)
i+j+k=2
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Substituting (3.6) into the first equation of (3.5) and equating coefficients of like powers of the
parameters i, A, §, we obtain linear operator equations for determining X;x which are solvable by virtue
of the generalized Schmidt lemma [2]

Mix = £, i+j+k=1 x; €H,, £, €Y, 3.7

ijk U]

Here, in particular

fmﬁ =S09 fow =0, fom = R)TIE
[wmo,‘i’zoo]*[‘”zoo"l’loo]u

fa00 = X100, 300 =” (01002 ®200]

We will find the first few coefficients of series (3.6). Using M;S, = x;S; we obtain Sy = I'Sy where
I' = (M;)".. From this we find that x;00 = S¢/k;. Then from condition foi0 = 0 we have xg5 = 0.
Sequentially solving Eqs (3.7) we find
Xoo1 = RT(T8),  Xpo =T (Tix00) = T(T;Sp)/ %, (38)
X0 = T(Tx;00) = T(I1Sg ) / k}

etc.
Noting that

(%11 =AM X35, S0)2 / K5 = (£, So )2 / 65 (39)
we obtain a numerically more convenient form of the equations governing xgg;, X200

M(Py,€%)xgo1 = By (TG~ (Ti%,S0)280 / K2)
(3.10)
M(P0,82)X2m = (HSO _(HSO'SO>ZSG /Kz)/ Klz

Substituting series (3.6) with known coefficients into the second relation of (3.5), we derive the
branching equation, which can be written in the form

L,OOMB + LyjoMr + LygoE+...=0

Loy, = H)(c’x’w{),x)¥ Ly '(wO,x’mO,x>/Kl
Lygy = ({[wg. Wae0 1+ (@00, Wol 00) + {[05, Wogo L We )/ K

(3.11)

The dots denote terms that are of higher order in p, A, €, and the angle brackets denote the scalar
product of functions.

We note that Lyy = 0 by virtue of the periodicity of the VEF §; in the variable y. We assume that
Esg9# 0 and Log; =0. Then (3.11) can be transformed into the form
O ME) = bu —Ap+ K()E+...=0

bS—Lg()o/L“o» K(t)“_LO()l/LIIO

(3.12)

According to Koiter the coefficient b (the Koiter parameter) is a coefficient of the sensitivity of the
structure to imperfections. That is, if b < 0, the shell is taken to be sensitive to imperfections, because
in this case the critical stability-loss load for an imperfect shell Py, is less than that for the perfect shell
Py. The limit point P is found from the simultaneous solution of Egs (3.12) and

0P(u,A,E)/ du=0, A, =P~ FR (3.13)



Post-critical behaviour of an axially compressed imperfect cylindrical shell 1057

and is obtained in the form
B, =P +3KDE/ 25N +... (3.14)

We remark that formula (3.14) was first obtained by Koiter. The solution of Eq. (1.3) corresponding
to the limiting point Py, is unstable. Because of what has been said earlier the problem of establishing
the sign of the Koiter parameter b is very important. Few analytic results have been obtained. We note
the papers [3, 4] which proved the positivity of the Koiter parameter for plates of arbitrary shape under
the action of external pressure. A graph of the dependence of the Koiter parameter on the Batdorf
parameter has been given [5] and an asymptotic formula for the parameter b when Z — < has been
numerically obtained for a cylindrical shell undergoing axial compression with clamped ends. Below
we construct the leading asymptotic term (Z — ) of the Koiter parameter corresponding to a
cylindrically compressed shell with moveable hinged ends.

4. ASYMPTOTIC FORMS OF THE PARAMETER b WHEN P, € a(0)(¢, U)

We introduce the notation.
Ino =x1L1j0,  hoo = %3 Lsoo 4.1)

We consider the case when Py e 6O(g, U), i.e. So(t, ) = (uf,o), uf,o))(t) sin(d,y +mn/2)(n=1,2,...).

With the help of the replacement x = & we deduce from (3.11) that
l 2 A
hi = Zl[(u,’,) L Ilf]l= [ f(t)dt 4.2)
ZA
Here we omit the superscript (0) from u,. Using the asymptotic formulae
M= 2D 40, My = 0D, n=3(1+iv3)+ 06T
Ce —%(l—iﬁh 0(e?), 0= -%(1 +iV3)+O(e?), J= (1 +7’.3-) +0(¢)
we find from (4.2) that
hio=4lfe+0(1) (n=1,2,..) (43)
Thus the leading term in the asymptotic expansion of /;;y does not depend on the wave number n

along the circumference of the cylindrical shell.
We now construct an asymptotic formula for x;. Noting that the relation

P, =lIS, 13 /(€l0)
follows from (2.1) and taking the limit as € — 0 in this relation using (4.3), we find
K; =4l + O(¢g) 4.4)
This means that
Ly =1/e + O(1) 4.5)

To construct the asymptotic expansion of Ljy it is first necessary to construct the solution of the
boundary-value problem
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Alwygg + ooy —Whoo = —d2 [(u,v,)" +(~1)"*' @, cos2d,y]/ 2 @6
AP0 + ©30 = d2[(u? 12)" +(=1)"*"' @, cos 2d,y]/ 2

A()=m()'+( )y, ()Y=0()at

Wy00(2A) =0, @hpo(£A) =0, YPoo(£A)=0, Y'(+A)=0

O, =up, ~2ujv), +u,vl, Oy =ulk, —(u))?
which is obtained from the second equation of (3.10) with
So(t, ) = (U, VuXDsin(dyy + 7n/2)

without using x;. In formulae (4.6) the superscript (0) has been omitted from P, u,,, v,,, W09, W00 We
shall seek the solution of problem (4.6) in the form

W00 (1, y) = 0, (1) + (-1)" @, (t)cos2d, y
4.7)

Yoo (t,¥) = (1) + (=1)" Yy () cos2d, y
Substituting (4.7) into (4.6), and separating the variables, we obtain the boundary-value problem
O(a;)0; + R~ yi'=f;, @0)p; +0;'=g

(4.8)
©;(xA)=0, o{{xA)=0, Y;(xA)=0, P/(xA)=0
o) )= ()Y -20%( )" +a*() a; =0, a, =26,
a2 a2 (u2) d:
h '-—2'"(""”,.) . b "2L¢|’ 81 '—2'(7) » &2 ’—7(1’2
governing wy(1), yi(t) ( = 1,2).
Using relations (3.11) and (4.7), we transform the formula for /3 into the form
i, 2y |
Lo = —38—1[200114"1),, +yihs ]+ ;I[fzu)z + 89,1 4.9)

We construct the asymptotic solutions of boundary-value problems (4.8) using the asymptotic inte-
gration method [6]. We note that according to the results of Section 2 we have the asymptotic
representations

PO =3 PV, BQ =R PP =0 P9 =d} (n=12..) (4.10)

The right-hand sides of boundary-value problems (4.8) can also be represented in the form of series
£ =3 fPWe, g = 3 0!
j=0 Jj=0

where f,-(o)(t) *0, g,-(o)(t) #* (). We seek the solutions of boundary-value problems (4.8) in the form of
series

w;(t) = e'zu)f'z)(t) + e"mf'l)(t) + mﬁo)(t)+...

P;(0) = e PP O+ e P + 9 D)+ (=1,2)

Substituting these series into (4.8) and equating the coefficients of ¢/ to zero, we obtain boundary-value
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problems governing 0),0) @), \v@(t). We solve these for j = -2 and obtain
ol 20 =P @), P @) = TP (1) ((=1,2) 4.11)

The constants C{™ are found from the solvability conditions for these boundary-value problems
when j = 0, and are obtained in the form

1 I[2uquvh - () v
T e

4.12)
oD o3 Iugovy =@ vel o
2 I7(up)” - 8(vp)°]

(the superscript (0) is omitted from 1y, vg). Using relation (4.3) in (2.12), from (4.12) we deduce that
C? =1+ 0(e)
From this we obtain
0, () =-uP e +06E™), P (0)=-vPMe+0(e™) (i=12)

We now use the latter formulae together with relation (4.9) and compute the integrals, obtaining

d2 2 d2 -1
L300 -gl'.'.g +O(g_ ) b-—ge +0(8 ) (4.13)

From this it folgows that for sufficiently small € > 0 the bifurcation point P¥ € ‘0, U) turns into
the limit point P ,,) where

3(K@d,E\?
{(0) (0)
Fos =B - '2-(—;;”") (4.14)

Here the dots denote terms of higher order of smallness in &; it is assumed that & = O(e?), i.e. the
amplitude of the initial imperfections is proportional to the relative thinness of the shell.

We introduce the notation
P, = min P9 (4.15)
n

and call P, the limit point corresponding to the set of bifurcation points % € 6©O(g, U).

With an appropnate choice of the function { the limit point P, can correspond to any bifurcation
point from the set 6¥(g, U).

Indeed, suppose

C(X.)’) - 2 ai‘v;'(xvy)

where W(x, y) are the first coordinates of the VEF of boundary-value problem (2.1) corresponding to
the EV P;. Using the orthogonality condition

( Wi, Wj,xx) =0, imj
we derive Log; = POo,l14 from (3.11).

From this we have
K@) =-PPa, Ik, =-a,/(4l)+0()
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Then
%
3 (nmna,E
p;g>-1_a(_2s_n) e (4.16)

Now suppose that {(x, y) = 2W(x, y)/(rj). Then the relation

%
3(&
Ps - R’(g) -1—2—1'(;) +... (4°17)

follows from (4.15) and (4.16).
The result obtained above can be expressed as a theorem.

Theorem 2. Let P,® e 69(e, U) & ~ O(e?) (e - 0). Then to the bifurcation point P, there corresponds
a limit point P,; < P, with asymptotic representation (4.14). Moreover, for every j such that P; e 0(0)(8,
U), one can select an imperfection function  such that P ; is the limit point corresponding to the set of
bifurcation points 6O, U).

5. ASYMPTOTIC FORMS OF THE PARAMETER b WHEN Py € ¢(V(e, U)
In this case So(t,y) = (Y, v{")(¥) sin (d,y + ©/2) (n = 1, 2, . . .). Using the asymptotic formulae
1
n -—2-(1 +i\/§)+-;-(l +iv3)e + O(e?), m, = 0(e?),
C-—%(l—iw/g)+(l—i\/§)s+0(sz)
1 . i i
-—|+J§+2(1-—) 0(£?), J-(l——)— —i 2
Q 5 (1+iV3) 5 (e?) 5 (1-iV3)e + O(e?)

and continuing as in Section 4, we again arrive at formulae (4.4) and (4.5) for xy, /;10-
In the same way as above we obtain

5d} i} 5dt _
Lo = -3 240(c7"), bm= Y '+ O(1) (61)

It follows from (5.1) that b > 0. Consequently, the bifurcation points P’ do not turn into limit
points, and the corresponding eigenshapes (odd with respect to the axial coordinate) are stable.
I wish to thank L. S. Srubshchik for useful advice and discussions.
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